

The LHC

The LHC

ATLAS Collaboration

ATLAS Detector

Luminosity weighted relative detector uptime and good quality data delivery during 2012 stable beams in pp collisions at Vs=8 TeV between April 4th and June 18th (in %) – corresponding to 6.3 fb⁻¹ of recorded data. The inefficiencies in the LAr calorimeter will partially be recovered in the future.

Pileup Challenges

Pileup Challenges

Pileup Challenges

Understanding $E_{\rm T}^{\rm miss}$ (highly sensitive to pileup) is critical for many searches.

COLUMBIA UNIVERSITY

SM Cross Section Measurements

Electro-weak and top cross sections are fundamental on their own and for new physics searches (and discoveries). SM Higgs Production and Decay

W/Z

W/Z

Signal modeled with Powheg+Pythia6 (7 TeV)/Pythia8 (8 TeV)+Photos for gg and VBF, Pythia for associated production.

SM Higgs cross sections increase ~1.3% from 7 to 8 TeV at m_H ~125 GeV

SM Higgs decay precisely predicted (except mass) at NLO and NNLO.

Most sensitive for I20 GeV < m_H < I30 GeV: $\gamma\gamma$, $\tau\tau$, $ZZ^{(*)} \rightarrow 4I$, $WW^{(*)} \rightarrow IVIV$, $W/Zb\overline{b}$

Hints from 2011

Combination of 12 channels:

- $H \rightarrow \gamma \gamma$,
- W/ZH → W/Z bb
- H → TT
- H → ZZ(*) → 4I
- H → WW(*) → IVIV
- H → ZZ → IIqq
- \bullet H \rightarrow ZZ \rightarrow II \vee \vee
- $H \rightarrow WW \rightarrow Ivqq$

2.9 σ excess for $m_H = 126$ GeV

Improvements since 2011

- With the 2011 data we improved our detector understanding, alignment and calibration and pileup understanding along with improvements in $e/\gamma/\mu$ ID efficiency.
- Early 2012: Focus on 2 channels: $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^{(*)}$. $H \rightarrow WW^{(*)}$ is also sensitive, but it is more difficult to see the expected broad excess in the M_T distribution.
- Re-optimize analysis for high pileup and low m_H using MC and 2011 data.
- Fix selections and techniques before looking at 2012 data.

SM $H \rightarrow \gamma \gamma$ - Analysis

Relatively simple final state of two photons:

 $\gamma_1 p_T > 40 \text{ GeV}, \gamma_2 p_T > 30 \text{ GeV}$

Identified using calorimeters clusters and conversions vertices in tracker.

Split into 10 categories based on η and un/converted, $p_T(\gamma\gamma)$, and (new) 2 jet VBF category to improve sensitivity.

Improved yy mass resolution:

Search for signal over SM $\gamma\gamma$ irreducible background: better resolution increases sensitivity.

Photon ID: Reject jet $\rightarrow \pi^{\circ} \rightarrow$ fake γ background (10^4 - 10^7 times larger cross section) with improved photon ID.

Expect (with $10 \text{ fb}^{-1} \text{ m}_{H}=126 \text{ GeV}$):

~170 signal events

~6340 background events

SM H→yy - ID and Reconstruction

Suppress jet background using shower shape variables from first (finely segmented) calorimeter layer.

Neural net 2011 data, cut based 2012

Asolation determined using clusters with $\Delta R=0.5$. Pileup rected for ambient avent.

Subtraction improved to remove dependence on bunch position.

≣vents / GeV

SM H→γγ - Event composition

After selection background contains 75-80% SM $\gamma\gamma$ 20-25% γ -jet, jet-jet.

Converted/Unconverted photons stable vs pileup.

SM H-YY - Mass Resolution

$$m^2_{YY} = 2 \cdot E_1 E_2 \cdot (1 - \cos \alpha)$$

Energy calibration improved with corrections derived from $Z\rightarrow ee, W\rightarrow ev$ and $J/\Psi\rightarrow ee$.

Energy scale at m_Z know to 0.5%, linear to better than 1%.

Resolution constant term ~1%.

Calibration transported from ee to $\gamma\gamma$ using MC.

Mass resolution for 125 GeV signal ~1.6 GeV.

YY - Mass Resolution

$$m^2_{YY} = 2 \cdot E_1 E_2 \cdot (1 - \cos \alpha)$$

Photon angle measurement based on photon pointing.

Photon direction determined using longitudinal segmentation of calorimeter.

Photon pointing reduces vertex uncertainty from 5-6 cm to 1.5 cm, sufficient for $m_{\gamma\gamma}$.

A likelihood combining tracking information with calorimeter pointing is required for jet selection in VBF category.

m(yy) Distribution

Combined distribution with background fit and signal (126.5 GeV SM Higgs for reference) +background.

Actual background fit to a polynomial function is done within categories of η , unconverted/
converted and $\gamma\gamma$ pt to increase sensitivity. Function chosen to reduce the bias for mH = 125 GeV (studied in MC)

SM $H \rightarrow \gamma \gamma$ - Exclusion

Expected exclusion from 110 - 140 GeV.

Actual exclusion at 95% from 112 - 122.5 GeV and 132 - 143 GeV.

Largest deviation from background only at 126.5 GeV.

SM H→ yy Significance

Combined local significance with 2011 and 2012 data of 4.5σ .

Expected for SM Higgs at m_H=126.5 GeV is 2.4σ)

$4 \mu \text{ event } m_{4\mu} = 125.1 \text{ GeV}$ $m_{12} = 86.3 \text{ GeV}, m_{23} = 31.6 \text{ GeV}$

SM $H \rightarrow ZZ^{(*)}$ Analysis

Relatively simple final state: 4 leptons (e/ μ)

Low rate but the final state is pure (S/B~I) and can be completely reconstructed.

Select:

Lepton $p_T^{1,2,3,4} > (20, 15, 10, 7/6 e/\mu)$ GeV, $50 < m(II)_{12} < 106$ GeV, $m(II)_{23} > 17.5 - 50$ GeV (vs. m_H) impact parameter cut on 2 soft leptons.

Acceptance and efficiency: Need to find leptons at low p_T.

4l mass resolution: Observe signal over SM ZZ^(*) irreducible background. Better resolution increases sensitivity.

Low Mass Backgrounds: Cannot rely only on MC.

SM $H \rightarrow ZZ^{(*)}$ e/ μ Reconstruction

Electrons: Improved reconstruction efficiency at low p_T, ID efficiency flat vs. pileup.

Muons: Reconstructed down to 6 GeV, efficiency flat in η and vs pileup.

SM $H \rightarrow ZZ^{(*)}$ Mass Resolution

m₄₁ [GeV]

Narrow resolution critical for finding peak on smooth background.

Resolution improved $\sim 10\text{-}15\%$ by constraining m_{12} to m_Z (and m_{34} for $m_H > 190$ GeV).

SM $H \rightarrow ZZ^{(*)}$ Backgrounds

Muons:

Background dominated by ZZ(*) with Zqq/bb + t t important at low m_H .

Strategy is to relax isolation and impact parameter requirements and then fit for the yields in this background enriched region, and finally to extrapolate to signal region.

Electrons: Background of light jets faking an electron (f), photon conversions (γ) and heavy quark semileptonic decays (Q) important low m_H.

Again, relax selection and fit yields using tracking and calorimeter variables. Extrapolate to signal region.

SM $H \rightarrow ZZ^{(*)}$ Final Selection

Full Range

Events at 125 ± 5 GeV:

Dataset	2011	2012	Combined
Background	2 ± 0.3	3 ± 0.4	5.1 ± 0.8
Signal	2 ± 0.3	3 ± 0.5	5.3 ± 0.8
Observed	4	9	13

SM $H \rightarrow ZZ^{(*)}$ Final Selection

Full Range

Expected exclusion from 124-164 GeV and 176 - 500 GeV.

Actual exclusion at 95% from 131-162 GeV and 170-460 GeV.

Around 126 GeV there is no exclusion.

SM $H \rightarrow ZZ^{(*)}$ Significance

Combined local significance with 2011 and 2012 data of 3.40 at 125 GeV.

Expected for SM Higgs at $m_H=125$ GeV is 2.6σ)

4e event $m_{4e} = 124.6 \text{ GeV}$ $m_{12} = 70.6 \text{ GeV}, m_{23} = 44.7 \text{ GeV}$

Channel Combination

Combining all channels from 2012 and 2011

Expected exclusion from 110 - 575 GeV.

Actual exclusion at 95% from 110.0-122.7 GeV and 129.7-557 GeV.

Actual exclusion at 99% from 112.6-121.7 GeV and 129.7-556 GeV.

Around 126 GeV there is no exclusion.

Channel Combination

Excellent agreement across entire mass range ($\pm 2\sigma$) with background only hypothesis, except close to 126 GeV.

Local excess of 5.0σ at 126.5 GeV

Expected from SM Higgs $m_H = 126.5 \text{ GeV} = 4.6\sigma$

Global significance: 4.1 to 4.3σ for LEE over 110-600 GeV or 110-150 GeV

SUSY Searches

SUSY

Provides:

Solution to gauge hierarchy

Gauge coupling unification

Cold dark matter candidate

Hunting the Top Squark

Where next?

- a priori squarks could have different masses.
- A light 3rd generation is well motivated in SUSY.
- Focus on dedicated stop searches at 7 TeV with ~5fb⁻¹.
 In order of increasing masses.

Direct light stop search - 2 lepton

Optimized for $m(t) \ll m(t)$

Signatures: 2 low p_T leptons, low p_T b jet (untagged) and $E_{\rm T}^{\rm miss}$ > 20 GeV

$$\tilde{t}_1 \rightarrow b\tilde{\chi}_1^{\pm}$$
 BR = 100%
 $\tilde{\chi}_1^{\pm} \rightarrow W^{(*)}\tilde{\chi}_1^0$

Data consistent with SM backgrounds, set limits.

Direct light stop search - kinematic search

Same scenario with stop to b chargino, but optimized for $m(t) \sim m(t)$.

I or 2 leptons, jets are b-tagged to reduce non-top backgrounds.

Non-trivial signal selection on kinematic variables:

Invariant mass of top decay products (smaller for stop events)

Mass scale of subsystem of visible and invisible particles from top/stop decay

All channels are consistent with SM backgrounds.

Direct stop search - 0 lepton

$$m(\tilde{t}) > m(t)$$

Select 6 jets +
$$E_{\rm T}^{\rm miss}$$

Background t $t \rightarrow bjj + bTV$

Good agreement with SM background

LSP

top

stop

25 Ge\

Entries /

 $\tilde{t} \rightarrow t + \tilde{\chi}^0_1$

 $m(\tilde{t}) > m(t)$

Select: exactly 1 lepton

 \geq 4 jets (p_T > 80, 60, 40, 25 GeV) at least 1 b jet

 $130 \text{ GeV} < m_{iji} < 205 \text{ GeV}$

5 signal regions with varying cuts on $E_{\rm T}^{\rm miss}$ and m_T to improve sensitivity.

Good agreement with SM background

top

stop

stop

Direct stop search - 2 lepton

 $m(\tilde{t}) > m(t)$

Select: exactly 2 leptons

 \geq I jet with p_T > 50 GeV, \geq 2 jets with p_T > 25 GeV, \geq I b jet

$$\mathsf{m}_{\mathsf{T2}} > \mathsf{120~GeV} \quad m_{\mathsf{T2}}(\mathbf{p}_{\mathsf{T}}^{\ell_1}, \mathbf{p}_{\mathsf{T}}^{\ell_2}, \mathbf{p}_{\mathsf{T}}^{\mathsf{miss}}) = \min_{\mathbf{q}_{\mathsf{T}} + \mathbf{r}_{\mathsf{T}} = \mathbf{p}_{\mathsf{T}}^{\mathsf{miss}}} \left\{ \max[\ m_{\mathsf{T}}(\mathbf{p}_{\mathsf{T}}^{\ell_1}, \mathbf{q}_{\mathsf{T}}), m_{\mathsf{T}}(\mathbf{p}_{\mathsf{T}}^{\ell_2}, \mathbf{r}_{\mathsf{T}}) \] \right\}$$

if same flavor: 20 GeV $< m_{II} < 71$ GeV, or $m_{II} > 111$ GeV

Good agreement with SM background

top

top

b-iet

stop

 $\tilde{t} \rightarrow t + \tilde{\chi}^0_1$

Top squark mass limits

SUSY Limits

		ATLAS SUSY Searches* - 95% CL Lower Limits (Status: ICHEP 2012)	
	MSUGRA/CMSSM : 0-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-033] 1.40 TeV $\widetilde{q} = \widetilde{g}$ mass	
95	MSUGRA/CMSSM : 1-lep + j's + E _{T,miss}	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-041] 1.20 TeV $\tilde{q} = \tilde{g}$ mass $\int Ldt = (0.03 - 4.8) \text{ fb}^{-1}$	
searches	MSUGRA/CMSSM : 0-lep + multijets + E _{T,miss}	Lim4.7 fb , 7 feV [1206.1760] 840 GeV 9 ff (arge m ₀)	
100	Phono model : 0-lep + J's + E _{T,miss}	The state of the s	
	Prieno model : 0-lep + JS + E _{T,miss}		
Inclusive	Gluino med. χ (g \rightarrow qq χ): 1-lep + j's + $E_{T,miss}$	3 2	
CE	GMSR : 1-r + i's + F	and the first family and	
7	GMSB: $2-\tau + i^t s + F^{T,miss}$		
	GGM: $vv + F^{T,miss}$		
	7 .hb (virtual h) . 0 lon . h lle . F		
S D	g→bb ₂ (virtual b) · 0 lep · 2 b lle · F		
ark	g→bby (virtual b): 0-lep + 3-b-i's + E _{T,miss}		
3rd gen. squarks gluino mediated	Garage (virtual t): 1-len + b-i's + E _{T,miss}		
F. E	g-try (virtualt): 2-len (SS) + i's + F		
ge	G-tty (virtualt): 0-len + multi-i's + F		
3rd glu	Gatty (virtual t): Olen + 3-hile + F	L=4.7 (b) 7 TeV (ATLAS-CONE-2012-058) 940 GeV Q mass (m(x)) < 50 GeV)	
., .,	g→ttv (realt): 0-len + 3-b-i's + F,miss	$L=4.7 \text{ (b}^{-1}, 7 \text{ TeV (ATLAS-CONF-2012-058)}$ 820 GeV $\widetilde{\text{G}}$ mass $(m_{\widetilde{V}}^{-0}) = 60 \text{ GeV}$	
	$\tilde{h}\tilde{h}, \tilde{h} \rightarrow \tilde{h}\tilde{v}$: 0-lep + 2-b-lets + F	(=2.1 fb ⁻¹ , 7 TeV (1112 3832) 390 GeV b mass (m/c ²) < 60 GeV)	
3rd gen. squarks direct production	tt (very light), t→bγ : 2-lep + E.	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-059] 135 GeV T mass $(m(\tilde{\chi}^0)) = 45 \text{ GeV}$	
ans duci	tt̃ (light), t̃→bỹ²: 1/2-lep + b-iet + E-	$L=4.7 \text{ fb}^{-1}$, 7 TeV [CONF-2012-TBC] 120-173 GeV \tilde{t} mass $(m(\chi^0) = 45 \text{ GeV})$	
1007	ft (heavy), t→ty : 0-lep + b-jet + F	$I = 4.7 \text{ fb}^{-1}.7 \text{ TeV (ATLAS-CONE-2012-TRC)}$ 380-465 GeV T mass $(m(x^0) = 0)$	
d b	tt (heavy), t→ty : 1-lep + b-iet + E	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-TBC] 230-440 GeV \tilde{t} mass $(m_{\tilde{\chi}}^{(0)}) = 0$	
rd ire	\widetilde{tt} (heavy), $\widetilde{t} \rightarrow t\widetilde{\chi}^0$: 2-lep + b-jet + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-TBC] 298-305 GeV \widetilde{t} mass $(m(\widetilde{\chi}^0) = 0)$	
00	tt (GMSB) : Z(→II) + b-jet + E_	L=2.1 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-036] 310 GeV T mass (115 < m(χ _s) < 230 GeV)	
. **	$\widetilde{I_1}\widetilde{I_1}, \widetilde{I} \rightarrow \widetilde{I_2}$: 2-lep + $E_{\tau \text{ miss}}^{\tau, \text{miss}}$	$L=4.7 \text{ fb}^{-1}$, 7 TeV [CONF-2012-TBC] 93-180 GeV \widetilde{I} mass $(\widetilde{\chi}_{*}^{0}=0)$	
EW direct	$\widetilde{\chi}, \widetilde{\chi}, \widetilde{\chi}, \rightarrow \widetilde{l}v(\widetilde{l}\widetilde{v}) \rightarrow lv\widetilde{\chi}$: 2-lep + $E_{T, miss}$	L=4.7 fb ⁻¹ , 7 TeV [CONF-2012-TBC] 120-330 GeV χ^{\pm} mass $(m(\chi^0) = 0, m(\tilde{l}, v) = \frac{1}{2}(m(\chi^{\pm}) + m(\chi^0)))$	
9	$\widetilde{\chi}, \widetilde{\chi} \rightarrow 3l(vv)+v+2\widetilde{\chi}, : 3-lep + E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-TBC] 60-500 GeV $\widetilde{\chi}_{\perp}^{\pm}$ mass $(m(\widetilde{\chi}_{\perp}^{\pm}) = m(\widetilde{\chi}_{\perp}^{0}), m(\widetilde{\chi}_{\perp}^{0}) = 0, m(\widetilde{l}, \widetilde{v})$ as above)	
	AMSB : long-lived χ,	L=4.7 fb ⁻¹ , 7 TeV [CF-2012-034] 118 GeV $\tilde{\chi}_{+}^{\pm}$ mass $(1 < \tau(\tilde{\chi}_{+}^{\pm}) < 2 \text{ ns}, 90 \text{ GeV limit in } [0.2,90] \text{ ns})$	
Long-lived particles	Stable g R-hadrons : Full detector	ESTATIO, THE [ATENDOONT-2012-100]	
	Stable b R-hadrons : Full detector		
art			
20	Metastable g R-hadrons : Pixel det. only	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-022] 910 GeV \widetilde{g} mass $(\tau(\widetilde{g}) > 10 \text{ ns})$	
	GMSB : stable $\tilde{\tau}$		
>			
BP			
*****	BC1 RPV : 4-lepton + E _{T,miss}		
ē			
Other		Pheno model : O-lep + s + E	
Spin indep. WIMP interaction: 1/2-jets + E _{T,miss} [2=4.7 fb", 7 TeV [ATLAS-CONF-2012-TBC] 548 GeV M [*] Scale (m _χ < 100 GeV, tensor D9, Diracχ)			

Exotic Searches

Dijet Search at 8 TeV

Increased beam energy and parton luminosities → larger sensitivity to excited quarks and other NP.

Select 2 jets (jet radius=0.6), |y|<2.8

Fit distribution to $f(x) = p_1(1-x)^{p^2} x^{(p^3 + p^4 \ln x)}$ and search for local deviations.

No evidence of resonances: Limit $m(q^*)>3.66$ TeV, expected 3.53 TeV (@7 TeV $m(q^*)>3.35(3.09)$ TeV)

Dilepton and Z' Search

Search for heavy gauge boson Z' in 2 electron and 2 muon channels.

Backgrounds - Irreducible Z/γ^* tail (from MC) data-driven background estimates for QCD multijet (fakes).

Limit set on SSM Z': m(Z') > 2.21 TeV (exp. 2.26 TeV)

Dileptons + Photon

Search for excited leptons.

Extend dilepton search by selecting a photon $p_T>40$ GeV and test for resonance in m(l γ).

No excess in $m(I\gamma)$ distribution.

Limit at $\Lambda = m(l^*)$: $m(\mu^*) > 1.9 \text{ TeV } m(e^*) > 2.0 \text{ TeV}$

High Mass Diphotons

2 photons provide a clean signal for extra spatial dimensions:

RS gravitons (resonances)

ADD virtual graviton exchange (non-resonant)

Select γ pT > 25 GeV, m($\gamma\gamma$) > 140 GeV

Background largely irreducible, smoothly falling, SM $\gamma\gamma$. Fit to $f(m_{\gamma\gamma}) = p_1 \times (m_{\gamma\gamma})^{p_2 + p_3 \log m\gamma\gamma}$.

Limits set for RS

High Mass Diphotons

2 photons provide a clean signal for extra spatial dimensions:

RS gravitons (resonances)

ADD virtual graviton exchange (non-resonant)

Select γ pT > 25 GeV, m($\gamma\gamma$) > 140 GeV

Background largely irreducible, smoothly falling, SM $\gamma\gamma$. Fit to $f(m_{\gamma\gamma}) = p_1 \times (m_{\gamma\gamma})^{p_2 + p_3 \log m\gamma\gamma}$.

Limits set for RS and ADD $\eta_G = \mathcal{F}/M_S^4$ $\mathcal{F}^{=}$ related to the number of ED

Lepton+MET - W' Search

Search for heavy gauge boson W' in eV and $\mu\nu$ channels.

Select
$$E_{\mathrm{T}}^{\mathrm{miss}}$$
 > 25 GeV (μ), > 85 GeV (e)

Backgrounds - Primarily irreducible SMW tail. Determined with MC (Pythia 6.421 and reweighted to NNLO with ZWPROD and MSTW2008 PDF).

No excess in seen in data. Limit set on SSM W'.

Exotic Tops

t t Resonances

LHC is a top factory ($\sim 10^6$ and counting). New reach in searches for resonances (benchmark top condensate Z') and excesses (RS KK gluon) in t t system.

SM t t background dominates: MC@NLO 3.41 + CTEQ6.6 + Photos.

Select: Dilepton (H_T+ $E_{\rm T}^{\rm miss}$ distribution) - opp. charge, ≥ 2 jets, MET > 40 GeV

Semileptonic (m(t t) distribution) - isolated e/ μ , and I b-tagged jet in either 4 jets or 3 jets if I has m_j>60 GeV

No excess found. Limits: 500 GeV < m(Z') < 880 GeV and 500 GeV < $m(g_{KK})$ < 1360 GeV

Top + Jet Resonances

Top flavor violating processes motivated by A_{fb} measurements. Produce new heavy particle with top, observed as resonant top + jet production in t t system.

Select semileptonic top decay (e/ μ + $E_{\rm T}^{\rm miss}$) with b-tagged jet, \geq 5 jets (p_T >35 GeV).

No excess. For $g_R=1$, lower limit W' < 350 GeV

Top + Jet Resonances

Top flavor violating processes motivated by A_{fb} measurements. Produce new heavy particle with top, observed as resonant top + jet production in t t system.

Select semileptonic top decay (e/ μ + $E_{\rm T}^{\rm miss}$) with b-tagged jet, \geq 5 jets (p_T >35 GeV).

No excess. For $g_R=1$, lower limit $\Phi < 430$ GeV

Boosted Tops

Boosted jets provide a new tool for heavy particle searches.

Jet size R $\sim 2m_x/p_T$

R=1.0 m_j =138 GeV p_T =641 GeV

Boosted Tops

Boosted jets provide a new tool for heavy particle searches.

Boosted t t Resonances

events / GeV

Same leptonic selection as non-

Large-R jet (anti- K_T with R=1.0 with:

$$p_T > 250 \text{ GeV}$$

 $m_J > 100 \text{ GeV}$
 $\sqrt{d_{12}} > 40 \text{ GeV}$

Improved signal efficiency at high masses

No excess found. Limits:

600 GeV <
$$m(Z')$$
 < 1150 GeV $m(g_{KK})$ < 1540 GeV

Exotic Limits

Conclusions

We have evidence for a new, narrow resonance at ~126.5 GeV which decays to $\gamma\gamma$ and $ZZ^{(*)}$ with 5σ certainty.

Results are still preliminary. Measurements of the properties of this resonance are underway.

Proton run extended through December 2012. We will triple (quadruple?) the dataset!

Conclusions

SUSY searches probing the 3rd generation(stop) along with many other channels.

Searches for exotic NP with jets, leptons, photons, MET are extending their sensitivity well into the TeV range.

New boosted object signatures are now used in searches for t t resonances. Improvements and additional signatures coming.

